Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Stroke Cerebrovasc Dis ; 31(2): 106217, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1540804

ABSTRACT

BACKGROUND: COVID-19 has been associated with an increased incidence of ischemic stroke. The use echocardiography to characterize the risk of ischemic stroke in patients hospitalized with COVID-19 has not been explored. METHODS: We conducted a retrospective study of 368 patients hospitalized between 3/1/2020 and 5/31/2020 who had laboratory-confirmed infection with SARS-CoV-2 and underwent transthoracic echocardiography during hospitalization. Patients were categorized according to the presence of ischemic stroke on cerebrovascular imaging following echocardiography. Ischemic stroke was identified in 49 patients (13.3%). We characterized the risk of ischemic stroke using a novel composite risk score of clinical and echocardiographic variables: age <55, systolic blood pressure >140 mmHg, anticoagulation prior to admission, left atrial dilation and left ventricular thrombus. RESULTS: Patients with ischemic stroke had no difference in biomarkers of inflammation and hypercoagulability compared to those without ischemic stroke. Patients with ischemic stroke had significantly more left atrial dilation and left ventricular thrombus (48.3% vs 27.9%, p = 0.04; 4.2% vs 0.7%, p = 0.03). The unadjusted odds ratio of the composite novel COVID-19 Ischemic Stroke Risk Score for the likelihood of ischemic stroke was 4.1 (95% confidence interval 1.4-16.1). The AUC for the risk score was 0.70. CONCLUSIONS: The COVID-19 Ischemic Stroke Risk Score utilizes clinical and echocardiographic parameters to robustly estimate the risk of ischemic stroke in patients hospitalized with COVID-19 and supports the use of echocardiography to characterize the risk of ischemic stroke in patients hospitalized with COVID-19.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , Echocardiography/methods , Ischemic Stroke/diagnostic imaging , SARS-CoV-2/isolation & purification , Stroke/prevention & control , Aged , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Female , Humans , Ischemic Stroke/epidemiology , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/genetics , Thrombosis
2.
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association ; 2021.
Article in English | EuropePMC | ID: covidwho-1505382

ABSTRACT

Background COVID-19 has been associated with an increased incidence of ischemic stroke. The use echocardiography to characterize the risk of ischemic stroke in patients hospitalized with COVID-19 has not been explored. Methods We conducted a retrospective study of 368 patients hospitalized between 3/1/2020 and 5/31/2020 who had laboratory-confirmed infection with SARS-CoV-2 and underwent transthoracic echocardiography during hospitalization. Patients were categorized according to the presence of ischemic stroke on cerebrovascular imaging following echocardiography. Ischemic stroke was identified in 49 patients (13.3%). We characterized the risk of ischemic stroke using a novel composite risk score of clinical and echocardiographic variables: age <55, systolic blood pressure >140 mmHg, anticoagulation prior to admission, left atrial dilation and left ventricular thrombus. Results Patients with ischemic stroke had no difference in biomarkers of inflammation and hypercoagulability compared to those without ischemic stroke. Patients with ischemic stroke had significantly more left atrial dilation and left ventricular thrombus (48.3% vs 27.9%, p = 0.04;4.2% vs 0.7%, p = 0.03). The unadjusted odds ratio of the composite novel COVID-19 Ischemic Stroke Risk Score for the likelihood of ischemic stroke was 4.1 (95% confidence interval 1.4-16.1). The AUC for the risk score was 0.70. Conclusions The COVID-19 Ischemic Stroke Risk Score utilizes clinical and echocardiographic parameters to robustly estimate the risk of ischemic stroke in patients hospitalized with COVID-19 and supports the use of echocardiography to characterize the risk of ischemic stroke in patients hospitalized with COVID-19.

3.
J Virol ; 96(2): e0106321, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1476388

ABSTRACT

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Subject(s)
COVID-19/immunology , Induced Pluripotent Stem Cells , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Myocytes, Cardiac , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
4.
Journal of the American College of Cardiology ; 77(18, Supplement 1):2693, 2021.
Article in English | ScienceDirect | ID: covidwho-1213676
5.
Clin Imaging ; 77: 1-8, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1077836

ABSTRACT

BACKGROUND: Recent studies have demonstrated a complex interplay between comorbid cardiovascular disease, COVID-19 pathophysiology, and poor clinical outcomes. Coronary artery calcification (CAC) may therefore aid in risk stratification of COVID-19 patients. METHODS: Non-contrast chest CT studies on 180 COVID-19 patients ≥ age 21 admitted from March 1, 2020 to April 27, 2020 were retrospectively reviewed by two radiologists to determine CAC scores. Following feature selection, multivariable logistic regression was utilized to evaluate the relationship between CAC scores and patient outcomes. RESULTS: The presence of any identified CAC was associated with intubation (AOR: 3.6, CI: 1.4-9.6) and mortality (AOR: 3.2, CI: 1.4-7.9). Severe CAC was independently associated with intubation (AOR: 4.0, CI: 1.3-13) and mortality (AOR: 5.1, CI: 1.9-15). A greater CAC score (UOR: 1.2, CI: 1.02-1.3) and number of vessels with calcium (UOR: 1.3, CI: 1.02-1.6) was associated with mortality. Visualized coronary stent or coronary artery bypass graft surgery (CABG) had no statistically significant association with intubation (AOR: 1.9, CI: 0.4-7.7) or death (AOR: 3.4, CI: 1.0-12). CONCLUSION: COVID-19 patients with any CAC were more likely to require intubation and die than those without CAC. Increasing CAC and number of affected arteries was associated with mortality. Severe CAC was associated with higher intubation risk. Prior CABG or stenting had no association with elevated intubation or death.


Subject(s)
COVID-19 , Coronary Artery Disease , Vascular Calcification , Adult , Biomarkers , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Predictive Value of Tests , Retrospective Studies , Risk Factors , SARS-CoV-2 , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Young Adult
6.
J Am Coll Cardiol ; 76(18): 2043-2055, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-887081

ABSTRACT

BACKGROUND: Myocardial injury is frequent among patients hospitalized with coronavirus disease-2019 (COVID-19) and is associated with a poor prognosis. However, the mechanisms of myocardial injury remain unclear and prior studies have not reported cardiovascular imaging data. OBJECTIVES: This study sought to characterize the echocardiographic abnormalities associated with myocardial injury and their prognostic impact in patients with COVID-19. METHODS: We conducted an international, multicenter cohort study including 7 hospitals in New York City and Milan of hospitalized patients with laboratory-confirmed COVID-19 who had undergone transthoracic echocardiographic (TTE) and electrocardiographic evaluation during their index hospitalization. Myocardial injury was defined as any elevation in cardiac troponin at the time of clinical presentation or during the hospitalization. RESULTS: A total of 305 patients were included. Mean age was 63 years and 205 patients (67.2%) were male. Overall, myocardial injury was observed in 190 patients (62.3%). Compared with patients without myocardial injury, those with myocardial injury had more electrocardiographic abnormalities, higher inflammatory biomarkers and an increased prevalence of major echocardiographic abnormalities that included left ventricular wall motion abnormalities, global left ventricular dysfunction, left ventricular diastolic dysfunction grade II or III, right ventricular dysfunction and pericardial effusions. Rates of in-hospital mortality were 5.2%, 18.6%, and 31.7% in patients without myocardial injury, with myocardial injury without TTE abnormalities, and with myocardial injury and TTE abnormalities. Following multivariable adjustment, myocardial injury with TTE abnormalities was associated with higher risk of death but not myocardial injury without TTE abnormalities. CONCLUSIONS: Among patients with COVID-19 who underwent TTE, cardiac structural abnormalities were present in nearly two-thirds of patients with myocardial injury. Myocardial injury was associated with increased in-hospital mortality particularly if echocardiographic abnormalities were present.


Subject(s)
Coronavirus Infections/diagnostic imaging , Heart/diagnostic imaging , Myocardium/pathology , Pneumonia, Viral/diagnostic imaging , Ventricular Dysfunction/virology , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Coronary Angiography , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Echocardiography , Electrocardiography , Female , Heart/physiopathology , Humans , Italy/epidemiology , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL